3.448 \(\int \sec ^2(c+d x) (a+b \sec (c+d x)) \, dx\)

Optimal. Leaf size=47 \[ \frac{a \tan (c+d x)}{d}+\frac{b \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{b \tan (c+d x) \sec (c+d x)}{2 d} \]

[Out]

(b*ArcTanh[Sin[c + d*x]])/(2*d) + (a*Tan[c + d*x])/d + (b*Sec[c + d*x]*Tan[c + d*x])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0492891, antiderivative size = 47, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.263, Rules used = {3787, 3767, 8, 3768, 3770} \[ \frac{a \tan (c+d x)}{d}+\frac{b \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{b \tan (c+d x) \sec (c+d x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2*(a + b*Sec[c + d*x]),x]

[Out]

(b*ArcTanh[Sin[c + d*x]])/(2*d) + (a*Tan[c + d*x])/d + (b*Sec[c + d*x]*Tan[c + d*x])/(2*d)

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \sec ^2(c+d x) (a+b \sec (c+d x)) \, dx &=a \int \sec ^2(c+d x) \, dx+b \int \sec ^3(c+d x) \, dx\\ &=\frac{b \sec (c+d x) \tan (c+d x)}{2 d}+\frac{1}{2} b \int \sec (c+d x) \, dx-\frac{a \operatorname{Subst}(\int 1 \, dx,x,-\tan (c+d x))}{d}\\ &=\frac{b \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{a \tan (c+d x)}{d}+\frac{b \sec (c+d x) \tan (c+d x)}{2 d}\\ \end{align*}

Mathematica [A]  time = 0.0213023, size = 47, normalized size = 1. \[ \frac{a \tan (c+d x)}{d}+\frac{b \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{b \tan (c+d x) \sec (c+d x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2*(a + b*Sec[c + d*x]),x]

[Out]

(b*ArcTanh[Sin[c + d*x]])/(2*d) + (a*Tan[c + d*x])/d + (b*Sec[c + d*x]*Tan[c + d*x])/(2*d)

________________________________________________________________________________________

Maple [A]  time = 0.019, size = 51, normalized size = 1.1 \begin{align*}{\frac{a\tan \left ( dx+c \right ) }{d}}+{\frac{b\sec \left ( dx+c \right ) \tan \left ( dx+c \right ) }{2\,d}}+{\frac{b\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{2\,d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(a+b*sec(d*x+c)),x)

[Out]

a*tan(d*x+c)/d+1/2*b*sec(d*x+c)*tan(d*x+c)/d+1/2/d*b*ln(sec(d*x+c)+tan(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 1.05301, size = 78, normalized size = 1.66 \begin{align*} -\frac{b{\left (\frac{2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 4 \, a \tan \left (d x + c\right )}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

-1/4*(b*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) - 4*a*tan(d*x +
c))/d

________________________________________________________________________________________

Fricas [A]  time = 1.93901, size = 198, normalized size = 4.21 \begin{align*} \frac{b \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) - b \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \,{\left (2 \, a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/4*(b*cos(d*x + c)^2*log(sin(d*x + c) + 1) - b*cos(d*x + c)^2*log(-sin(d*x + c) + 1) + 2*(2*a*cos(d*x + c) +
b)*sin(d*x + c))/(d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b \sec{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(a+b*sec(d*x+c)),x)

[Out]

Integral((a + b*sec(c + d*x))*sec(c + d*x)**2, x)

________________________________________________________________________________________

Giac [B]  time = 1.30635, size = 144, normalized size = 3.06 \begin{align*} \frac{b \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right ) - b \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right ) - \frac{2 \,{\left (2 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 2 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{2}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

1/2*(b*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - b*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(2*a*tan(1/2*d*x + 1/2*c)
^3 - b*tan(1/2*d*x + 1/2*c)^3 - 2*a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1
)^2)/d